Transverse Navigation under the Ellipsoidal Earth Model and its Performance in both Polar and Non-polar areas
نویسندگان
چکیده
The transverse navigation system has been designed and developed to solve the challenges of navigation in polar regions. However, considerable theoretical errors are introduced into the system when the spherical Earth model is adopted. To tackle this problem, a transverse navigation mechanism under the ellipsoidal Earth model has been proposed in this research and the application regions of the proposed algorithm are specified and evaluated through error analysis. The analysis shows the presented transverse navigation system works in both polar and part of the non-polar regions. Field tests were conducted to evaluate the navigation performance in Nanjing, a non-polar region. A novel experimental method, where the field test data in mid-latitude areas was used to simulate the real Inertial Measurement Unit (IMU) data and the reference information in polar regions, was adopted to investigate the performance of the proposed algorithm in polar areas. The results show: that in the mid-latitude areas, the presented transverse navigation system achieves the same accuracy as the traditional inertial navigation system and that in polar regions, the proposed transverse mechanism outperforms the traditional method with a much lower error in longitude and yaw.
منابع مشابه
P-242: Sex Determination in ICSI Oocytes with Two Polar Bodies Using PGD and FISH, A Case Report
Background: Morphology and presence of Polar body in the oocyte are denoting oocyte quality and is used as a criterion for prognosis of embryo quality. However, little is known about ICSI result of oocytes with two polar bodies. The present study reports the result of ICSI in a case having several oocytes with two polar bodies. Materials and Methods: A 34 years old patient (K.H.) with history o...
متن کاملA Polar Initial Alignment Algorithm for Unmanned Underwater Vehicles
Due to its highly autonomy, the strapdown inertial navigation system (SINS) is widely used in unmanned underwater vehicles (UUV) navigation. Initial alignment is crucial because the initial alignment results will be used as the initial SINS value, which might affect the subsequent SINS results. Due to the rapid convergence of Earth meridians, there is a calculation overflow in conventional init...
متن کاملSeparation of Aromatic and Alcoholic Mixtures using Novel MWCNT-Silica Gel Nanocomposite as an Adsorbent in Gas Chromatography
The separations of alcohols with hydrophilic and hydrophobic parts, and the separation of aromatic mixtures, are extremely important processes in gas and petroleum industries. Choosing an adsorbent for performing this separation is the most important part of the process. Silica gel is used as an adsorbent is various techniques such as pressure swing adsorption (PSA) and gas and liquid chromatog...
متن کاملAn Improved Correlation for Second Virial Coefficients of Pure Fluids
In the present work, a modified correlation is presented for the second virial coefficients of both polar and nonpolar fluids based on the corresponding states principle. The second virial coefficients of gaseous polar and non-polar compounds were calculated and compared with experimental data and with other correlations. Comparisons with the existing correlations show that the present work is ...
متن کاملInitial Alignment for SINS Based on Pseudo-Earth Frame in Polar Regions
An accurate initial alignment must be required for inertial navigation system (INS). The performance of initial alignment directly affects the following navigation accuracy. However, the rapid convergence of meridians and the small horizontalcomponent of rotation of Earth make the traditional alignment methods ineffective in polar regions. In this paper, from the perspective of global inertial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016